Workshop Wednesday: It’s So HOT, You Could Fry an Egg Outside!

So we did! Not during the most recent heat wave, but back when my kids were little, and the thermometer was stuck above 100 degrees for way too many days in a row, we proved that we could fry an egg outside. Here’s how we did it:

I placed my cast iron griddle in a spot that would remain sunny all day and left it there for at least an hour to get good and hot before starting the egg. The black iron really absorbs a lot of heat — science discussion #1. Then I smeared a little butter on the hot surface (to keep the egg from sticking and creating a bigger mess) and broke the egg onto the melted butter — this step was very undramatic, with no sizzling or crackling like you would expect to hear when frying an egg on the stove — science discussion #2. I placed a glass lid over the egg to help trap the solar heat (and keep any bugs away from our egg) — science discussions #3 & #4. Then we got busy and did other things for several hours, trying to keep cool while our little egg enjoyed its sauna — science discussion #5 was about the moisture inside the glass lid. We checked on the egg about once each hour, and if I remember correctly, I think it took about 4 hours for the white of the egg to appear cooked and, well, white. Then we posed for pictures. Notice that 1) there is proof of the temperature on the thermometer in the shady background, 2) my little guy snatched the eggshell off the plate just before I snapped the photo, and 3) a Pound Puppy is maintaining a safe distance from that hot griddle atop my daughter’s head.

Based on my son’s age here, this photo was taken in the summer of 1987! My now-adult daughter reminded me of this photo and suggested I post it now so that you can try frying an egg outside as a hot summer day activity and have a few brief scientific discussions of your own. Please don’t try to eat the egg after it’s spent so much time in the sun — no one wants food poisoning as their next summer day activity — science discussion #6!

Workshop Wednesday: Natural Science

Summer is a great time for science exploration. The backyard is the perfect location for mixing Diet Coke and Mentos (search You Tube if you don’t know what I’m talking about), and the weather is relatively cooperative for spending time outdoors. There are abundant species of plants, birds, bugs, and other critters just waiting to be studied, so by adding a few basic supplies, we can turn a boring afternoon into a great learning experience.

The required supplies may surprise you: a pocket-sized magnifying glass is good enough for this project, and some simple drawing supplies complete the list. A small sketchbook and pencil are good for making simple drawings, tracing paper and dark crayons work well for texture rubbings, and a notebook and pencil can serve as your journal for noting what species are found or recording any experiments you try. Toss these into a bag or backpack, along with some bottled water, snacks, bug spray, and sunscreen, and then head out on an exciting trek through the wilderness or a walk around the block, which can yield just as many thrills in the variety of species to be found!

We went on picnics and nature hikes in our favorite parks, but we also found that walking the same route through our neighborhood would reveal new discoveries each time. The trees bloomed and leafed out at different rates in the Spring, flower beds bloomed throughout the seasons, and weeds could be as much fun to identify as anything else. Birds were another category we learned to identify, both by sight and by their songs or calls. Fishing with Dad always gave us opportunities for seeing more natural wonders.

We made rubbings of leaves, we drew sketches of birds and bugs (not very artistic, but good enough to help us look them up later in wildlife reference books), and we studied all sorts of things through a magnifying glass. Sometimes we just sat in amazement and watched the miniature world of an anthill or a pond full of tadpoles. We watched bees and wasps diligently visiting every blossom on an apple tree. We giggled at the antics of squirrels burying acorns, then digging them up again only to bury them in another spot. We listened to the birds and learned to mimic them well enough to have them answer when we called. We sorted a handful of random pebbles into several types of rocks. We carefully pulled flowers apart, petal by petal, to study the intricate designs. The various categories of nature study could fill an entire summer by selecting a different interest each day!

When I was in high school, my science teacher required each student to compile an extensive collection of plants as a year-end project, and each year he increased the number of species! I think the final tally was 40 wildflowers, 40 trees, 10 grasses, and 5 mosses – all different, no duplicates, and we had to label each one with its correct name. My kids loved the idea of being able to identify that many individual species, so we hiked through some of the same areas that I had frequented during high school, just to see if we could find those same plants again. I wish that when I was making my high school collection that I’d had the book we used then. We had a wildlife reference book that covered everything from trees to mushrooms to wildflowers and more creepy-crawlies than you want to know about. There are now many websites for reference, and you can find apps for your smart-phones, too! If you don’t already own or have access to the supplies listed above, visit our Etsy shop to purchase the GFHS Natural Science Mobile Learning Lab, which includes a Usage Guide with many activity ideas.

Here are a few references to get you started:
“Natural Science Mobile Learning Lab” from Guilt-Free Homeschooling
What Bird Is That?
What Tree Is That?
North American Wildlife

Workshop Wednesday: Jumpropes

I spent a lot of summer days in my childhood jumping rope, so when we heard about a precision jumprope team in our area, we had to investigate. My kids joined the group and learned some amazing acrobatic tricks that make jumping rope much more fun and a great way to impress your friends! In this Workshop Wednesday, we will also move beyond merely jumping the ropes and explore some other ideas that will show you how to use jumpropes in making ordinary lessons extraordinary! These tips will take lessons off the table and out of the classroom and make them into kinesthetic learning fun!

Jumping rope is a great strength and stamina building activity, which is why boxers and other athletes use it as part of their training. Before we get started in the how-to’s of fancier jumping, let’s talk over some basics. Speed ropes are best for this type of activity; a speed rope is plastic or vinyl but may be solid or a hollow tube, with handles that spin freely. To get your rope to the perfect size for your body, stand on the middle of the rope and pull the handles up as high as they will go: the handles should come up to your shoulders. To shorten a rope, untie the knot in one end and retie it at the appropriate length, sliding the handles back in place; you can cut off the excess rope if you wish, or keep some extra length for kids who are still growing. If your rope is too short, you will be more likely to trip over it; if your rope is made of something soft like braided cotton roping, it will move too slowly and mess up your timing.

Ow! If you are new to jumping rope or haven’t done it for a long time, you will probably experience a painful side-ache after an extended period of steady jumping. This is an indication that you are retaining too much carbon dioxide from breathing in more than you are breathing out. You can remedy this situation by exhaling forcibly for a count of 5, then inhale for only a count of 3, and repeat until the ache is gone. I know it hurts, and this is hard to do when all you want to do is gasp for more air, but controlling your breathing like this for about a minute will dissolve that pain! The more you practice jumping rope, the quicker you will get in shape, and the sooner those side-aches will be a thing of the past. Trust me.

If you’re all practiced up and ready to move beyond ordinary rope-skipping, try using a jumping-jack technique: move your feet about shoulder-width apart on one jump, then bring them back together on the next jump, repeating the out-in-out-in movement over and over. Another variation is a forward-backward jump: jump a half-step forward on the first jump, then jump back a step on the next jump, repeating the forward-backward-forward-backward motion. Another move that is fun to watch (and impresses your friends) is called the Slalom: move both feet to the left on one jump, then move both feet to the right on the next jump, repeating left-right-left-right.

As your legs get stronger, you can try squatting down on one jump, then standing up on the next: up-down-up-down. When your muscles are ready for a really big challenge, try the Cossack, which resembles a Russian Cossack dance done while jumping rope: squat down for jump #1, extend your right leg on jump #2, pull in your leg again for jump #3, extend your left leg for jump #4, and repeat jumps 1-4. Every jump takes place in a squatting position, but you hop up and down a little as you jump the rope and switch your legs out and in. Try practicing the leg moves without the rope first for best results. It takes lots of strength and coordination to do this one, but no one who sees you perform it will ever forget it, and they may ask you to show it off to everyone who comes along!

Once these basics steps have been mastered, you can use them to make boring lessons more interesting. Mom can call out a spelling word for the student to spell out loud while jumping. Mom can hold up math flashcards, and the jumping student can call out the answers. What other basic facts could be reviewed while jumping rope? Try defining vocabulary words, giving examples of parts of speech, calling out matching states and capitals, and so on. The jumprope games of my youth incorporated counting rhymes, but today’s kids could use songs, raps, or poems for whatever subject they are learning and give an auditory element to their learning-while-jumping.

After everyone’s tired from all that jumping, the jumpropes can still help out in lessons. Lay several ropes in the grass or on the floor in vertical parallel lines and create a timeline, using the ropes for century divisions. Hang a name tag around Barbie’s neck and let her represent Betsy Ross. GI Joe can receive a similar name tag and become Jim Bowie at the Alamo. My Little Pony might represent the Cavalry at the battle of Little Big Horn, and a tiny model of the Empire State Building can be built from Legos, and all of these historical people and events (and more) can be placed in the appropriate places in your time line. Those same parallel ropes could be used for lanes in a relay race or as part of an obstacle course, and please don’t overlook the obvious math lesson concepts of vertical, horizontal, parallel, and perpendicular.

Now let’s rearrange the ropes a little to make a hopscotch pattern on the grass, as a nice change from playing hopscotch on hard concrete. Tennis balls can be used instead of rocks for the marking “stones,” and the squares can be marked with numbers or other information written on large pieces of paper or cereal box cardboard, held in place with shoes, bricks, or anything heavy that won’t blow away on windy days. Remove the obstacles and add a garden hose and a sprinkler for some hot weather fun!

Another rearrangement of the ropes can create a giant tic-tac-toe grid on your lawn. Use extra shoes or sports balls for the markers. Little ones can walk across the grid to place their markers, but older kids will enjoy the challenge of standing behind a marked line (another jumprope!) and trying to toss their markers onto the correct squares. Objects that bounce and roll will only add to the challenge and the fun.

Our lessons for today wouldn’t be complete without making gigantic Venn diagrams with our jumpropes. This example shows square things in the left group, red things in the right group, and square red things in the intersection of the two groups. Challenge your students to create their own Venn diagrams for practice in understanding the various ways objects can be categorized, perhaps using sports equipment, toys, shoes, or anything that can be sorted appropriately. Jumpropes can also be used indoors for this type of jumbo lessons on the floor.

See also:
Hopscotch–A Powerful Learning Game
Kinesthetic Learners

Workshop Wednesday: Clothespins

Clothespins? Yes, ordinary spring-type clothespins can be turned into some pretty snazzy manipulatives and still be pressed into laundry duty as needed. I used a Sharpie permanent marker to write on the “business end” of each clothespin. See the entire alphabet? (click on photos to enlarge)

I made my clothespins with upper case letters. Your students can practice matching them up with their lower case “little brothers” on flashcards, even homemade ones like this piece of cereal box cardboard.

Did you notice that the first pic had the clothespins facing one way and the next pic had the clothespins facing the other way? Good for you—you’re very observant! I wrote the letters on both sides of the clothespins, carefully facing them in opposite directions, so that the pins could be used either up or down. Here’s one pin I took apart, so you can see both sides at once.

I repeated this trick with numbers and arithmetic operation symbols. These are clipped onto a wire hanger to spark your imagination with more ideas for use!

And here’s a quick math problem with clothespins:

You can make multiple sets of letters and numbers with these low-cost, multi-purpose manipulatives. Let your early learners sort the letters in alphabetical order or clip the clothespin letters onto matching flashcards, letter tiles, or the title words on their favorite storybooks. Use the pins for phonics practice, challenge your students to form their spelling words, or leave silly messages on the clothesline. Bring a different tactile dimension to math lessons by letting the littles sort the numbers in order, combine pins for multiple-digit numbers, or include the operation symbols for writing out math problems. Best of all, these manipulatives can do double duty on laundry day, and your students will get plenty of stealth learning practice when they sort the pins out again for lessons!

For more fun, combine these with:
ABC Flashcards
What Is the Missing Element?
Letter & Number Recognition

 

Workshop Wednesday: Hopscotch – A Powerful Learning Game

Who knew that a patch of concrete, some chalk, and a couple of rocks could produce a fun way to learn just about anything? When I was a little girl, I played hopscotch in the traditional way, tossing my stone and jumping from square to square, just as a game for practicing my tossing and balancing skills. Hopscotch can also be used as a kinesthetic learning method, involving the big muscles of arms and legs, pumping information through the blood vessels to the brain. I can see many other uses for the basic method of hopscotch, providing a great method for teaching preschoolers, kinesthetic learners, active children, or anyone else who just needs a break from sitting at a table for one more worksheet.

Let’s start by changing the standard hopscotch pattern to a row of 10 squares, numbered from left to right, and let your little ones practice counting as they hop from box to box and back again—tossing a marker stone or beanbag can be used later as their counting skills increase. Do the same thing with a row of ABC’s, first for letter recognition and later for reciting the sounds made by each letter or for a word beginning with that letter. Mom can say a word, and the child can hop to the letter that begins the word. For more advanced students, change the ABC’s to a grid pattern, and try “Twister Spelling” by putting hands and feet in the correct squares to spell the word. Use multiple beanbags, poker chips, or plastic yogurt lids for markers, and challenge your kiddies to spell out words by placing their markers on the correct letter squares.

You can also practice addition and subtraction facts with a hopscotch grid. Draw a 1-10 grid by making two rows of five squares each: 1-5, 6-10. Make these boxes large enough for your student to stand in, sort of like a hopscotch game. Start with simple addition problems by asking: If you put down [this many] markers, starting with Box #1 and putting one marker in each box, and then you add [this many] more markers, how many boxes will have markers in them? What is the largest number box that contains a marker? Repeat this activity with as many different number combinations as possible, until your student knows addition facts from 1-10 so well that he cannot be stumped. Then draw two more rows of boxes, extending the grid to 20 (11-15, 16-20), and continue the addition practice with problems up to 20. You can also work on learning doubles in the teens: 5+5=10, 6+6=12, 7+7=14, 8+8=16, 9+9=18, 10+10=20. These facts will help him with problems where the answer is between 10 and 20.

Does one of your students have trouble with subtraction? Using the 1-20 grid, pick a problem that may have stumped your child, like 13-9=? In this example, cover all numbers larger than 13. Ask: If you put down 9 poker chips, with one on each box, starting with 13 and counting down, what is the largest number box that will still be showing? If he’s already experienced at using the 1-20 grid of numbered boxes, he will be able to recognize the row of 6-10 as being 5 boxes. Then he can see that there are 3 boxes for 11-13, so those two rows will use 8 of his 9 poker chips; now he can put the last chip in the largest numbered box in the top row (the 5), and he’s left with 4 as the largest number box still showing: 13-9=4

Another helpful trick is to show your student how to work up or down from 10 when the answer to a problem doesn’t come to him immediately. For example, 13-9=? Let’s see, I know that 10-9=1, and 13 is 3 more than 10, and 3+1=4, so 13-9=4! How about 17-9=? 10-9=1; 17=10+7, and 1+7=8, so 18-9=8! Did you follow that? Children can get discouraged when they don’t know or can’t remember an answer immediately. Showing them several different methods for figuring out the answer helps them to see that they are smart enough to find the answer anyway. Working toward the answer from 10 or from the nearest double is a legitimate method of solving the problem and is actually a better way to learn than just rote memorization, since it uses more creative solving methods.

Are you ready to take this up one more notch? Help your students draw a 1-100 grid (10 rows of 10 squares each, numbered 1-100) and challenge your young mathematicians to toss two beanbags onto the grid and add the resulting numbers. Add more beanbags as their skills increase, or switch to subtraction or multiplication. Use beanbags in different colors (or marked with mathematical operation symbols) for students with appropriate abilities: Color #1 means add this number, Color #2 means subtract this number, Color #3 means multiply by this number, and Color #4 means divide by this number. Use several beanbags for each mathematical operation, drawing them at random from a bucket to create an amazing running math problem. Number squares can be chosen by random tossing or through careful aim. Challenging siblings to toss the beanbags and create problems for each other to solve may result in some serious stretching of math skills! Other possibilities are to toss two beanbags to create a fraction, then simplify it as needed—and more beanbags mean more fractions, which can then be added, subtracted, multiplied, or divided, always reducing the answer to its simplest form. The hopping part of hopscotch doesn’t come into play with this method (unless your kids figure out their own creative way to use it), but the tossing and retrieving of beanbags will still give your wiggly kids plenty of action.

Now you think you’ve heard all of the possible ways to use hopscotch in learning, right? Not at all! Let’s go back to the original hopscotch pattern, but instead of numbering the squares, write in parts of speech: noun, pronoun, verb, adjective, adverb, conjunction, preposition,  prepositional phrase, and interjection.  Hopping through the boxes gives the student a chance to think of a correct example word to give when he stops to pick up his marker. Use more specific terms as your students’ grammar skills increase: irregular verb forms, verb tenses, plurals, reflexive pronouns, dependent clauses, and so on. I included a “sentence” space at the end, and students should make their example sentences match the level of grammar being studied.

If you have a student who is really interested in science, specifically chemistry, and if you have access to a large patch of concrete, consider helping him draw out the periodic table of elements and numbering the squares accordingly. Let him make simple flashcards for each element to fit the boxes on his diagram (cereal boxes are a great source for inexpensive flashcards; write on the back with permanent marker) and practice putting them in their proper places. Flashcards might include the atomic number, the element name and symbol, and the atomic weight. More advanced students may want to include more detailed information and use the jumbo flashcards for memory practice. Other hopscotch applications: a diagram of the solar system would provide practice at naming the planets, a simplified skeleton could be drawn for practice at naming the bones, or a map of the United States (or any geographic area) would provide practice at naming states, capital cities, or other geographic features. Coordinate planes with x- and y-axes provide a large grid for plotting specific points with poker chips. Students of advanced math can solve complex equations, plot the points from multiple solutions, and draw the curves with yarn or string.

Any of these hopscotch learning games may also be drawn with permanent markers on an old, discarded sheet or tablecloth (check local thrift stores), resulting in a reusable “game board” that can be folded up and stored between uses. Use the cloth on grass, carpeting, or other surfaces where it is less likely to slip underfoot. Beanbags aren’t required, but the “marking stone” needs to be something that won’t roll away when tossed—or blow away if used outdoors.

If the weather isn’t cooperating for outdoor activities, or if you don’t have a suitable surface for chalk, or even if your students are just not excited about going outside and jumping around where anyone in the neighborhood might see them, these activities can also be done indoors by using masking tape or sticky-notes on the floor. You can even draw the grids on a large sheet of paper and use coins or game pawns as markers.

See also:
What Is the Missing Element?
Building Blocks for Success in Math
Beanbags (No-Sew DIY)

Workshop Wednesday: Building Blocks for Success in Math

Math is called a foundational subject for good reason: if you don’t have a solid foundation, anything you try to build on top of it is in danger of falling apart. Math is also called a sequential subject, meaning that math skills must be mastered in sequence, each skill building on the skills before it. This picture represents my view of math skills and the order in which they should be mastered, starting at the bottom and building up, one skill upon another.

No one starts teaching math by instructing their preschoolers in differential calculus. The first math skill we teach is Sorting: Which ones match? Is this one like that one? We may start the sorting process with colors or shapes, but Sorting is still the basic skill being learned. Sorting is the #1 most important math skill, used from recognizing number value to solving the most complex equations. Counting is an extension of sorting, assigning a number name to each different quantity. We “know our numbers” when we can group the correct quantity of pieces to represent any given number. We have mastered counting when we can recite the quantities in ascending order. The ability to count backwards is preparation for further skills yet to come.

Place Value might be considered to be an extension of Sorting by placing 1-digit numbers together in one group, 2-digit numbers as another group, yet another with 3-digit numbers, 4-digits, and so on. Children who are learning to count past 10 are learning place value, even though they are not yet adding or subtracting large enough quantities to require carrying or borrowing. Those skills work hand-in-hand with addition and subtraction, but an understanding of place value has to come first. Using a large quantity of identical small manipulatives, such as toothpicks, you can demonstrate the quantities represented by numbers in the ones column and numbers in the tens column to show how and why we write numbers the way we do. As your student gains skill with addition, you can revisit Place Value to demonstrate carrying into the tens, hundreds, thousands, and as many columns as your child wishes to add.

The next natural step after Place Value is Addition. Your child may already be using his counting skills to inform you that since he already has 1 cookie, if you would just give him 2 more cookies, then he would have 3 cookies! He may not recognize 1+2=3 on paper, but he certainly understands cookie quantities! Addition facts are best learned through using real-life objects, manipulatives, or even diagrams, rather than just expecting a young mathematician to transfer immediately to written problems. Hands-on practice makes subtraction easily evident as the un-doing process for addition, thereby taking away the stigma that subtraction is yet another new skill to learn. If a student knows addition facts to the point of quick recall, that same student will be able to perform subtraction. Therefore, a student who struggles with subtraction is a student who has not mastered addition facts.

Multiplication is often presented as one more new skill to master, but when presented as a “short-cut” to repeated addition, the student will see multiplication facts as a convenient tool, not as an obstacle to further learning. Multiplication facts can be demonstrated with a large quantity of small manipulatives that can be grouped into repeated rows (½” squares of heavy paper or cardboard work very well). Some quantities of manipulatives can be rearranged to show various factors which result in the same amount, such as 1×12, 2×6, 3×4, 4×3, 6×2, and 12×1. Grouping and regrouping the manipulatives will give your student a deeper understanding of multiplication facts as he sees the groups (visual), arranges them with his own fingers (tactile), and repeats the facts aloud (auditory). A kinesthetic learner will prefer standing or kneeling to do this activity, providing yet another sensory element.

Why isn’t Division listed in these Building Blocks? Simply because Division is un-doing Multiplication, just as Subtraction is the un-doing of Addition. The only tricky part to Division is that sometimes things don’t come out completely even, and we get “left-overs”—but every child who has tried to share 5 cookies with 3 friends understands that concept already. Division uses the quick recall skills for multiplication facts to regroup as evenly as possible, and the “left-overs” will be dealt with in more detail later on as these skills progress even further into the concepts called fractions and decimals. By the way, fractions, decimals, and percents are all “nicknames” for the same amounts—they are just different ways of looking at the same quantities, such as ½, .5, and 50%, and those all mean that you and I are sharing equal amounts of the same cookie!

The final Math Building Block to be mastered is Logic. Logic means making sense of things, so they come out right. Logic may come in the form of “If/Then” statements, such as the block in the picture shows: If all cats have 4 legs, and Fido has 4 legs, does that then mean that Fido must be a cat? Fido might be a cat, but we also know that other animals besides cats have 4 legs, so we cannot assume that Fido is a cat until we have more information. That is logic: using information to prove a point, but sometimes you realize that you don’t have enough information yet, and the point you prove could be wrong. Another use of logic is in balancing equations. A very simplified example is 7-2=5; if we add 2 to each side, we’ll see 7-2+2=5+2 or 7=7, a true statement. What we do to one side of an equation must also be done to the other side to keep it balanced, as if the equals sign was the pivot point on a balancing scale.

If your student is struggling with any of these building block skills, back up and practice the previous block’s skills until they are mastered. Recall of these facts should come as easily as a reflex action before the student is ready to move on successfully to the next building block. Don’t worry that other students may be moving ahead already—they may not be ready either, and their “progress” will soon result in more struggles. Remember that a student who cannot do division does not know multiplication facts well enough. A student who struggles with multiplication does not know addition facts well enough, and neither does the student who struggles with subtraction. A student who has trouble with addition does not understand place value or number values well enough. Success in math is achieved by mastering skills in sequence and building a solid foundation with each skill before attempting more challenging skills.

For more tips, see also:
Looking for the “Hard Part”
Why Does Math Class Take SO LONG?

Workshop Wednesday: Sidewalk Art

What better way to incorporate drawing lessons into a beautiful homeschooling day than with chalk on the sidewalk or driveway? We often took our favorite storybooks outside with a bucket of chalk (and maybe a folded towel for under the knees) and picked some simple illustrations to duplicate.

Our favorites included the Little Miss and Mister Men characters by Roger Hargreaves and all of the fanciful creations of Dr. Seuss. Actually, we discovered that you can turn nearly any smiley-faced character into a Seuss-ian delight by adding an outcropping of tall feathers to the top of its head, a long, long, long tail, and brightly colored fur in zig-zaggy stripes. Now that’s a great lesson in cartooning! Encourage your budding artists to make a game of adding more and more features to their creatures by calling out “Heads” or “Tails” and supplementing those traits. Give each character special talents or accessories, such as juggling ice cream cones, wearing a polka-dot necktie, or holding a dozen strings tied to gigantic balloons.

Be sure to take the time to admire each other’s masterpieces and praise their unique qualities. Give each artist a turn to tell about his or her drawing, pointing out details and describing techniques used, for informal practice at oral presentations. Most of all, have fun making silly drawings and enjoying the chalk antics.

Sometimes we made several individual drawings, and sometimes we connected multiple parts into a long scene that filled our front sidewalk for the full width of our property. One summer day when lots of neighbor kids were looking for something to break up the boredom, I drew a very basic chalk outline of an old-fashioned circus train that stretched out over several blocks of our sidewalk, assigning each block (one box car) to a different child. We discussed as a group what sort of things our train should have (planning and problem-solving skills), and the children chose what they wanted to draw (delegating skills). One drew a box car with two giraffes sticking their long necks out the top. Another drew a lion in a cage, and another chose to draw the train’s steam engine with great puffs of smoke billowing out the smokestack. Our train had a few clowns, bright colored flags and pennants, and the words “Circus Train” on the side of yet another box car. The kids spent most of the afternoon drawing and coloring with the chalk and adding special touches. When anyone finished his own section, he would go help someone else, giving them all a great feeling of teamwork. The finished sidewalk “mural” received lots of admiration and compliments from neighbors and was the object of several photographs by parents. The kids all put so much work into their circus train, that we were all very glad that we had no rain for several days afterwards! However, rain was usually seen to be a magical eraser that tended to bring new inspiration for more drawings instead of disappointment that the previous masterpieces were gone.

Obviously, a variety of chalk colors makes drawing more delightful, but don’t underestimate the value of plain white chalk. Your art students will discover shading on their own, as they go over and over a section to make the color more intense, and having a limited palette of colors will make them more creative with using patterns. Be careful to use chalk marked “sidewalk chalk,” as others may not wash off as easily. I once bought a box of beautiful colored chalk at a garage sale, only to discover that the intense colors left permanent stains on the clothing we were wearing when we used it! The knees and elbows and sleeve cuffs had deep colors ground in from kneeling and leaning on the drawings, no matter how careful we had been. One more point: chalk is soft and gets used up quickly on rough surfaces, so buy in bulk! No one wants to stop in the middle of drawing an enormous stegosaurus, just because he ran out of chalk.

Whether your creations are large or small, simple or elaborate, you can enjoy a nice day outside with chalk, learning to copy drawings from books or making your own creations. Starting with simple line drawings from a favorite storybook will help beginning artists gain confidence, since they don’t have to rely on their imaginations for inspiration. After all, a large blank sidewalk can be rather intimidating! Making your drawings LARGE increases the number of details that can be added: a small face may not have room for much more than eyes and a smile, but a big face can also hold eyelashes, freckles, glasses, or a handlebar mustache!

Verified by MonsterInsights